skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jackson, Ethan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Harris County, Texas, remains at continuous risk to mosquito-borne diseases due to its geographic landscape and abundance of medically important mosquito vectors. Targeted mitigation of these mosquitoes requires accurate identification of these mosquitoes taxa. Currently, there is a paucity of genetic information to inform molecular identification and phylogenetic relationships beyond well-studied mosquito species. Here we utilized a genome skimming approach using shallow shot gun sequencing to generate data and assemble the mitochondrial genomes of 37 mosquito species collected in Harris County, Texas. This report includes the complete mitochondrial genome for 25 newly sequenced species spanning 10 genera; the genomes were consistent with reference genomes in the GenBank database having 37 genes (13 protein-coding, 2 rRNA and 22 tRNA), and average AT content of 78.74%. Bayesian and maximum likelihood tree topologies using just the easily aligned 13 concatenated protein coding genes confirmed phylogenetic placement of species for Aedes, Anopheles and Culex genera clustering in single clades as expected. Furthermore, this approach provided more robust phylogenetic placement/identity of study taxa when compared to the use of the traditional cytochrome oxidase I partial gene barcode sequence for molecular identification. This study demonstrates the utility of genome skimming as a cost-effective alternative approach to generate reference sequences for the validation of mosquito identification and taxonomic rectification, knowledge necessary for guiding targeted vector interventions. 
    more » « less